If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+60x=396
We move all terms to the left:
4x^2+60x-(396)=0
a = 4; b = 60; c = -396;
Δ = b2-4ac
Δ = 602-4·4·(-396)
Δ = 9936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9936}=\sqrt{144*69}=\sqrt{144}*\sqrt{69}=12\sqrt{69}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-12\sqrt{69}}{2*4}=\frac{-60-12\sqrt{69}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+12\sqrt{69}}{2*4}=\frac{-60+12\sqrt{69}}{8} $
| 4x-2=2(x+7) | | 4x-2=2x( | | 5(x+1)=x+5 | | 1=2t+6t | | 9(2-j)+3(5-2j)=2(7-2j)-4(j-1) | | x^2-4x-221=0 | | x/9+7=32 | | -13(2-x)=13x-26 | | x-8.9=−5.1 | | -0.6x+4.3=-4 | | -3/5-2x=41/15 | | 4x^2+36=52 | | X-7=x234 | | 2x+10=4x+8 | | 11t-3t=-8 | | -2(2x+1)=-(3x+10) | | 8(7-3g)=-17g | | 3/2k+11/4=53/4 | | -6(-8n+1)=90 | | -3/2b-7/4=-1/28 | | 3x=2x-(2/3+1/6) | | 4(4x-1)=-100 | | 3x=2x−(2/3+1/6) | | 23+4x+12-x=11 | | 5x=-5/6 | | -m+1/3=-1/2 | | Z=2(z+5) | | -025n+9.15=-0.95 | | 4×-7=3x | | 59+59+80+2x=180 | | 104=-7(m-6)+6 | | x2+10x+61=0 |